STEADY MOTION OF A GAS BUBBLE IN A LIQUID

B. N. Yudaev, O. V., Tsirlin, UDC 532.529.6
and A. A. Yushkin

A method is proposed for calculating the velocity of a gas bubble during a steady lift in a
liquid, on the assumption that the bubble transmits to the medium an array of weak waves,

In the design of industrial bubblers it is necessary to determine the length of time the gaseous and the
liquid phases remain in contact. It has been established that shortly after the injection (~107° sec) a gas
bubble begins to move at a constant velocity, i.e., the lift force is balanced by the forces of inertial and
viscous drag in the liquid,

The motion of a solid sphere in a liquid was first studied theoretically by Stokes [1], who has also
derived a formula for the velocity of steady motion applicable at values of the Reynolds number Re < 1.,
Oseen [2] has refined Stokes' solution by using for the drag coefficient two terms of the series expansion
in powers of Re; his solution is valid when Re ~ 1, Hadamard and Rybczynski have extended this analysis
to include bubbles and droplets, assuming that slip flow occurs at the interphase boundary [3]. These
authors assumed that the tangential components of velocity as well as the normal and tangential stresses
are, respectively, equal on both sides of the interphase boundary. Such an assumption definitely implies
gas circulation inside the bubble. This process was then analyzed by Hill [4].

By introducing the concept of dynamic surface stresses, Boussinesq [5] hoped to accoumt for the
nonuniformity of stresses at the interphase boundary. For a small bubble radius R or for a high Bous-
sinesq surface viscosity this solution becomes identical to the Stokes solution.

Levich [6] was the first one to analyze the motion of a gas bubble at a Reynolds number Re > 1,
assuming zero tangential stresses at the interphase boundary. He has demonstrated that the velocity dis-
tribution around a bubble is not much different in viscous and in ideal liquids. Therefore, the velocity
distribution in an ideal liquid was used for the calculation of the drag force and the lift velocity of a bubble.
On the same premise, Moore [7] has solved this problem by a somewhat different method.

Applying the flow function to the motion of gas inside and using Levich's concept of a thin boundary
layer at the bubble surface, Chao has determined the lift velocity of a bubble with gas circulation. Chao's
formula is analogous to Moore's formula, but differs from the latter by including 2 term which depends on
the gas viscosity and density inside the bubble. Various aspects of the problem were considered by Miyagi
[9] as well as by Bond and Newton [10], also by other authors,

The final result of each of these researches was a relation between the constant lift velocity and the
radius of a bubble. The proposed formulas agree closely enough with test data up to Re ~ 400, However,
none of them fits the test data over any wider range of the Reynolds number. This limitation of the theories
developed so far is hardly due to an incomplete consideration of viscosity effects: it is easy to see that,
no matter how far the calculation of viscous drag forces were to be refined, the resulting corrections of
the formula structure would be much smaller than those called for, Consequently, more appropriate
solutions to the problem must be sought by a different approach.

The basic deficiency of those proposed theories is, in our opinion, that they have ignored the mndular
character of interaction between a moving bubble and the ambient medium. This conclusion is based on the
generally valid assumption that the pressure is low when a bubble moves at a low relative velocity and that,
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Fig. 1. Distribution of (a) pressure (normal) over the bubble surface and (b) tangential veloc-
ity component in the adjoining liguid layer, at the instant when a weak pulse is applied,

Fig. 2. Lift velocity U, (m/sec) of air bubbles in water: 1) approximation of test data; Zv)
according to formula (8) for a spherical bubble (diameter d,, mm); for ellipsoidal bubbles
according to formula (21) with: 3) £ =0.2; 4) 0.5; 5) 0.8,

therefore, the liquid may be considered incompressible. It seems just as probable and is thus correct

to assume that at low lift velocities there exist no eddies in the ambient medium around a bubble. These
two hypotheses yield a paradoxical pressure distribution over the surface of a body (d'Alembert's paradox):
the net pressure force on a bubble equal to zero. A pressure distribution according to this solution to

the problem is paradoxical not only on account of a zero drag on a moving bubble but also because it im-
plies that the pressure coefficient will be negative at the leading hemisphere, Furthermore, for any pres-
sure in the ambient medium there will, theoretically, be some velocity at which the pressure at the lead-
ing hemisphere becomes negative. This solution was obtained on the assumption of a potential flow; the
flow could be eddy, however, and not only because of friction forces but also because of normal pressure
forces. For example, the appearance of eddies always accompanies the motion of a body in a medium
inside a closed vessel. The basic problem then seems to be the determination of normal pressures,

We will assume that the flow around a bubble is nonseparative, i.e., an elementary jet starting at
the point @ = 0, r = R terminates at the point ® =, r =R. As is well known, the pressure at the front
of an acoustic wave is proportional to the density of the medium p, the velocity of sound in the medium c,
and the increase in the velocity of the medium Au. This velocity increment is equal to the projection of
the 1ift velocity on the radial axis: Au = U, cos ®, The leading hemisphere transmits compression waves
and the trailing hemisphere transmits rarefaction waves, as during displacement, A rigorously constructed
theory of motion in a liquid would have to consider that an array of waves is transmitted by the body during
this motion. The solution of such a problem requires a special study, however, because of its complexity.
Formulas for the drag force on a bubble and for the velocity of steady lift will be derived here on the
basis of a qualitatively novel but also simpler assumption,

We considera spherical gas bubble (Fig, 1) which is initially at standstill in a liquid and then receives a
short weak impulse, The upper hemisphere tends to compress the adjoining medium, whereasthe lower hemi-
spheretries to separate fromthe adjoiningliquid, A compressionwave will travel upward anda rarefaction
wave will travel downward, It is assumed that the liquid remains continuous everywhere, A velocity jump
will occur at the wave fronts, If the velocity of the bubble center is Uw, then the projection of the absolute
velocity of a liquid particle on the radial axis at a given point will vary from 0 to Au. The pressure dis-
tribution p over the bubble surface must be analogous, The maximum absolute value of pressure ppax, at
the uppermost point and at the lowermost point of the sphere, is mknown, The net normal pressure force
is
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We will now explore the structure of pmax. In order to be able to move, a bubble must perform
work on displacing a liquid particle from the uppermost point to the lowermost point of the surface. More-
over, this must transpire within a time t; = 2R /U, i.e., while the bubble is lifted through a distance
equal to its diameter, The acceleration of a particle moving down along the bubble surface is

=1 4P _ PuaxSin® 2
PR 4B oR

a =
The density of the liquid p may be considered constant here. The velocity of such a particle is
! 8
=, + | a(®)dv=u, - | a(d)dd, 3
0 0

with uy denoting the initial velocity (at the uppermost point) which is to be equated to zero. Differentiating
(3) with respect to the upper limit of the integral, then inserting (2) into the obtained equation, and inte-
grating the result will finally yield

. e S
i = 2sin 5 l/ -—vp‘g“— . (4)

The travel time of a particle down along the bubble surface is

b i

It follows from (5) that the pressure at the uppermost point of the bubble is proportional to the velocity
head. The numerical value of pygy cannot be found because, when the limits are inserted, the integral
in the equation tends to infinity: an infinitely long time of particle travel from the uppermost point to the
lowermost point on the bubble surface, the initial velocity of such a particle being zero. This situation
is encountered also in classical analyses of the problem. Furthermore, by virtue of the continuity of the
velocity distribution in the medium, the motion of particles along the nearest streamlines is very slow,
This is very interesting: if the liquid is considered ideal, then masses of it must adjoin the bubble both
at the top and at the bottom. The problem of determining these masses and analyzing their behavior be-
comes of fundamental importance here,

In our solution we let the maximum pressure be equal to the velocity head:

oU%
Pmax = P (6)
We then equate the total drag force and the lift force
4 2 OUQ 4
— nR* 2~ . — aR3%g. (7)
3 2 3 .

From this we obtain the steady lift velocity of a bubble (g denotes the acceleration of free fall);
Uo=1 2gR =443V K, m/sec. (8)

Values of U, according to (8) are compared in Fig. 2 with test data from [11]. The agreement is generally
more satisfactory than with earlier formulas, We will explain some discrepancies between theory and
experiment,

Bubbles 2 mm in diameteér or larger cease to be spherical. The flatmess of the U, = f(R) test curves
confirms the validity of the preceding analysis: if a spherical bubble has become ellipsoidal (with the same
volume), then friction does not change as much as the drag due to normal pressure force increases.

We will construct an analogous scheme for calculating the steady lift velocity of a bubble shaped as
an ellipsoid of revolution. The equation of an ellipse in polar coordinates with the origin at one focus is

r=—t (9)
I—ecosg
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where r denotes the radius-vector of a point on the ellipse, ¢ = [(v /2)-®] (angle @ is indicated in Fig. 1);
& =c¢/a denotes the eccentricity; @ and b are the major (horizontal) and the minor (vertical) semiaxis,
respectively; ¢ = Va?—b?%; and y = b*/ a is another parameter, Angle ¢ from a point on the equator to the
upper most point of the bubble varies from 0 to

b Vi—e
= — retg¥ %
¢, = arctg - = arcig - . (10)

The angle between the tangent to the curve and the polar axis is

dr
— 4-rctgo
- P
o = arctg —g (11)
ctggp — —r
dp
where
dr — b% sin

d¢  a(l—ecosg)

We insert (12) into (11) and use the result for calculating the projection of the normal pressure force on the
vertical axis:
plr(o), @ plg)sing

Pp=pCosa = —— = .
> ' | - (s—COScp) ¥ 1—2ecos g - g? (13)

sing

The projection of the velocity on the normal to the ellipse at any povint is
U, =U,cosa. (14

Therefore, we have for py,

- Prnax SIN* @
Po I —2Zecosg+¢&* (15)

The deformation of a bubble does not change its volume:
-4 4
—37 ma%h = —E— ﬂRa‘ (16)

Using the last expression and the expression for the eccentricity, we obtain

el

T ' it

The net force of normal pressure is found according to the expression
%o
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1—ecosq)* J'1—2ecosq +e*

(18)

As before, we now find the time in which a liquid particle moves from the uppermost point to the lower-
most point under a pressure distribution p = pmaxcos¢, and we then equate it to the time in which the
bubble has been lifted through a distance equal fo its minor (vertical) axis, From this equation follows
the structure of pmax:

| —e pl2 { i (1 — 26 cos ¢ - e2)3/dg
Prax = ‘S
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w

(19)
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According to (19), pyax is proportional to the velocity head and depends onthe eccentricity of the
elliptical bubble section, Letting ppax = pU% /2 and equating the force N to the lift force, we have

'~Po

ol>, {cos @ — &) sin*qde 4 (20)
! 7 — —— = — qR%g.
2 dnk? ' =& }(lﬂeco:(p) V1-—2ecosq -- & 3 =
This yields the steady lift velocity of a bubble:
) =
) ]/ 5 gVR
Vo= V> ' (21)

;5 T / cos @ — &) sin® gde
]/ s(l——bcoscp + T %ecosp + &2

The velocity U, calculated according to formula (21), as a function of the initial radius R and the
eccentricity & of a bubble in motion, is shown in Fig. 2, The effect of ¢ is quite appreciable. For a bubble
with a radius R =5 mm, for instance, U, = 30.1 cm/sec when £ = 0.1, « =5.01 mm, and b = 4.98 mm,
but Ue, =11.9 cm/sec when € = 0.8, a = 5.93 mm, and b = 4.55 mm: the lift velocity should thus decrease
2.5 times,

In conclusion, we note that the true shape of a gas bubble moving in a liguid is not ellipsoidal but
more intricate. The data presented here can be useful in problems concerning the motion of gas bubbles as
well as of other bodies in a liquid.

LY 0 Q=R ™M % AT

NOTATION
Re is the Reynolds number;
@ is an angle, deg;
r is the instantaneous radius, m;
R is the radius of a spherical bubble, m;
e is the density of the liquid, kg/m?;
c is the velocity of sound in the liquid, m/sec;
Au is the increment of velocity of the liquid acted on by the bubble surface, m/sec;
U is the steady lift velocity of a bubble, m/sec;
D is the pressure, N/m?;
N is the net force of normal pressure, N;
t is the time, sec;
a is the acceleration, m%/sec;
u is the velocity of a liquid particle, m/sec;
g is the acceleration of free fall, m/sec?;
dy is the bubble diameter, mm;
max is the maximum pressure on the bubble surface, N /m?
is the time (in the integration), sec;
is an angle (in the integration), deg;
is the eccentricity;
is a parameter, m;
, b are the semiaxes of an ellipse;
- (12—b2; .
is the polar angle, deg;
is the slope angle of a tangent to the ellipse, deg.
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